Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Radiology ; 304(2): 471-472, 2022 08.
Article in English | MEDLINE | ID: covidwho-1765164
2.
J Appl Clin Med Phys ; 22(8): 219-229, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293131

ABSTRACT

BACKGROUND: To conserve personal protective equipment (PPE) and reduce exposure to potentially infected COVID-19 patients, several Californian facilities independently implemented a method of acquiring portable chest radiographs through glass barriers that was originally developed by the University of Washington. METHODS: This work quantifies the transmission of radiation through a glass barrier using six radiographic systems at five facilities. Patient entrance air kerma (EAK) and effective dose were estimated both with and without the glass barrier. Beam penetrability and resulting exposure index (EI) and deviation index (DI) were measured and used to adjust the tube current-time product (mAs) for glass barriers. Because of beam hardening, the contrast-to-noise ratio (CNR) was measured with image quality phantoms to ensure diagnostic integrity. Finally, scatter surveys were performed to assess staff radiation exposure both inside and outside the exam room. RESULTS: The glass barriers attenuated a mean of 61% of the normal X-ray beams. When the mAs was increased to match EI values, there was no discernible degradation of image quality as determined by the CNR. This was corroborated with subjective assessments of image quality by chest radiologists. The glass-hardened beams acted as a filter for low energy X-rays, and some facilities observed slight changes in patient effective doses. There was scattering from both the phantoms and the glass barriers within the room. CONCLUSIONS: Glass barriers require an approximate 2.5 times increase in beam intensity, with all other technique factors held constant. Further refinements are necessary for increased source-to-image distance and beam quality in order to adequately match EI values. This does not result in a significant increase in the radiation dose delivered to the patient. The use of lead aprons, mobile shields, and increased distance from scattering sources should be employed where practicable in order to keep staff radiation doses as low as reasonably achievable.


Subject(s)
COVID-19 , Consensus , Humans , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic , SARS-CoV-2
3.
Clin Imaging ; 75: 1-4, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1039316

ABSTRACT

We describe a 40-year-old man with severe COVID-19 requiring mechanical ventilation who developed aorto-bi-iliac arterial, right lower extremity arterial, intracardiac, pulmonary arterial and ilio-caval venous thromboses and required right lower extremity amputation for acute limb ischemia. This unique case illustrates COVID-19-associated thrombotic complications occurring at multiple, different sites in the cardiovascular system of a single infected patient.


Subject(s)
COVID-19 , Hypertension, Pulmonary , Thrombosis , Venous Thrombosis , Adult , Amputation, Surgical , Humans , Leg/diagnostic imaging , Leg/surgery , Lower Extremity/diagnostic imaging , Lower Extremity/surgery , Male , SARS-CoV-2 , Thrombosis/diagnostic imaging , Thrombosis/etiology , Thrombosis/surgery , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/surgery
4.
Radiology ; 296(1): 172-180, 2020 07.
Article in English | MEDLINE | ID: covidwho-38290

ABSTRACT

With more than 900 000 confirmed cases worldwide and nearly 50 000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/methods , COVID-19 , Consensus , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Disease Progression , Global Health , Guideline Adherence , Humans , Personal Protective Equipment , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Radiography, Thoracic/instrumentation , SARS-CoV-2 , Severity of Illness Index , Societies, Medical , Triage , Video Recording
5.
Chest ; 158(1): 106-116, 2020 07.
Article in English | MEDLINE | ID: covidwho-634902

ABSTRACT

With more than 900,000 confirmed cases worldwide and nearly 50,000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Subject(s)
Coronavirus Infections , Lung/diagnostic imaging , Pandemics , Patient Care Management , Pneumonia, Viral , Radiography, Thoracic/methods , Respiratory Tract Diseases , Tomography, X-Ray Computed/methods , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Diagnosis, Differential , Disease Progression , Early Diagnosis , Humans , International Cooperation , Patient Care Management/methods , Patient Care Management/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL